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1 Viscous flows in pipes

Our intension here is generalized the one-dimensional @dlirequation for viscous flow. When
the viscosity of the fluid is taken into account total energadH = 2% + p—% + zis no longer
constant along the pipe. In direction of flow, due to fricticeuse by viscosity of the fluid we
have%’—i N ‘2'2—2 + % + 2. So to restore the equality we must add some scalar quaatity t
the right side of this inequality
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This scalar quantitys is called asydraulic loss The hydraulic loss between two different cross
section along the pipe is equal to the difference of totatggnéor this cross section:

|Ahs =H; —H; 2

We must remember that alwaifg > Ho. In horizontal pipe whez; = z and diameter of pipe is
constantvy; = v hydraulic loss is equal to the head of pressure drdpead loss

Ah, = PL— P2 (3)
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Head loss is express by Darcy -Weisbach equation:
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Figure 1: Pipe friction loss. For horizontal pipe, with ctarg diameter this loss may be measured
by height of the pressure dro@g =h

We must remember that equation (4) is valid only for horiabpipes. In general, with; = v,
butz # 2, the head loss is given
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Part of the pressure change is due to elevation change ahdsmhre to head loss associated
with frictional effects, which are given in terms of thriction factor f that depends on Reynolds
number and relative roughne$s= ¢ (Ree/D).

It is not easy to determine the functional dependence ofribtoih factor on the Reynolds
number and relative roughnegs/D). Much of this information is a result of experiments con-
ducted by J. Nikuradse in 1933 and amplified by many othersedinen. One difficulty lies in
the determination of the roughness of the pipe. Nikuradse astificially roughened pipes pro-
duced by gluing sand grains of known size onto pipe walls talpce pipes with sandpaper-type
surfaces. In commercially available pipes the roughnesstigs uniform and well defined as in
the artificially roughened pipes used by Nikuradse. Howeter possible to obtain a measure of
the effective relative roughness of typical pipes and tlushitain the friction factor. Figure (3))
shows the functional dependencefobn Reand and is called th®loody chart in honor of L. F.
Moody, who, along with C. F. Colebrook, correlated the oriidata of Nikuradse in terms of the
relative roughness of commercially available pipe malgria

1.1 Moody Chart

The following characteristics are observed from the dai@pfFor laminar flowRe< 2300f =
64/Re which is independent of relative roughness. For very I&ggnolds number§,= ¢ (¢/D)
which is independent of the Reynolds number. For such flows)ngonly termedcompletely
turbulentflow, along the wall pipe, exists the laminar sublayer so that the surface roughness
completely dominates the character of the flow near the Walé gap in the figure for which no
values off are given, 2106 Re< 4000, is a result of the fact that the flow in this transitionga
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Figure 2: Flow near rough and smooth walls

may be laminar or turbulent (or an unsteady mix of both) ddpenon the specific circumstances
involved.

Note that even for smooth pipes the friction factor is nobzé@mat is, there is a head loss in any
pipe, no matter how smooth the surface is made. This is at refstle no-slip boundary condition
that requires any fluid to stick to any solid surface it flowstov here is always some microscopic
surface roughness that produces the no-slip behavior kasd t£ 0) on the molecular level, even
when the roughness is considerably less than the viscolesysubhickness. Such pipes are called
hydraulically smooth Various investigators have attempted to obtain an amalyéixpression for
f = ¢(Ree/D). Note that the Moody chart covers an extremely wide rangeoim flarameters.
The non-laminar region covers more than four orders of ntagaeiin Reynolds number from
Re=4-10° to Re= 10®. Obviously, for a given pipe and fluid, typical values of thermge
velocity do not cover this range. However, because of tlgelaariety in pipe®, fluids (o, andu
and and velocities (v), such a wide range in Re is needed tmanodate nearly all applications
of pipe flow.

Colebrook combined all data for transition and turbulenivflo smooth as well as rough pipes
into the following relation known a€olebrook equation
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The Colebrook equation is implicit irfi, and determination of friction factor requires tedious
iteration. An approximate explicit relation fdris given by S.E. Haaland in 1983 as
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Figure 3: Friction factor as a function of Reynolds numbet eelative roughness for round pipes
-the Moody chart

For hydraulically smooth pipe the friction factor is appirogted by Blasius (1911) formula

f = (100Re ¥4 (8)

The next formula proposed by Aldsul(1952) gained some @ojtylin the engineering appli-
cation due to its simplicity:

£ 68
f=0,11(= +—)Y*
It is clear that in order to use the Moody diagram we must be &blobtain values of surface
roughness. These have been measured and tabulated (antihssnaotted) for an extensive

range of materials used in piping systems. Table 1 providegegepresentative values.

(9)

Table 1. Surface roughness values for various engineeringaterials

PIPING MATERIAL ROUGHNESS mm
Cast iron 0.26
Commercial steel and wrought iron 0.045
Concrete 0.3-3.0
Drawn tubing 0.0015
Galvanized iron 0.15
Plastic,(and glass) 0.0 (smooth)
Riveted steel 0.9-9.0




We must remember that the values in table typically usednarectual measured ones, but are
instead the result of data correlations constructed ovange of measurements. They are some-
times referred to as "equivalent” roughnesses; itis ugefabnsider them as simply representative
values.

1.2 Types of Fluid Flow Problems

In the design and analysis of piping systems that involveudeeof the Moody chart, we usually
encounter three types of problems:

1. Determining theoressure dropwhen the the pipe length and diameter are given for a spec-
ified flow rate (or velocity)

2. Determining thdlow rate when the the pipe length and diameter are given for a specified
pressure drop

3. Determining thepipe diameter when the pipe length and flow rate are given for a specified
pressure drop.

Example 1. Oil, with p = 90kg/m3 and kinematic coefficient of viscosity= 0,0000Im2/s,
flows at @ = 0,2m3/s through500m of2000mm diameter cast-iron pipe. Determine (a) the head
loss and (b) the pressure drop if the pipe slopes down at W0&rilow direction.

Solution. First we compute the Reynolds number-R¥ -d/v = 4-q,/(rmdv) =4- 0,2/(3,14-
0,2-0,0000]) = 128000 Velocity is equal to v qv/(“%z) = 6.4 m/s. Absolute roughness for
iron-cast pipe is¢ = 0.26 mm. So relative roughness é&s= £ = 0,0013 Now we are able to
calculate using the formula(10) or Moody chart, frictiorctar f = 0,0225 Then the head loss is

2
hf = Lv _ 00225220 6.4

d2g 022981 Lt/m

For inclined pipe the head loss is

hi = ﬁ)4—21—22: ﬁ)4—Lsin10’.
P9 P9

So pressure drop is
Ap = pg(hs —500-sin1¢°) = 900- 9,81- (117— 87) = 265- 10°.

Example 2. Oil, with p = 950kg/m3 and #= 2E — 5 m2/s, flows through 80— cm-diameter
pipe 100 m long with a head loss of 8 m. The roughness ragigds= 0.0002 Find the average
velocity and flow rate.

Iterative Solution. To start we need to guess f. A good first guess is the "fullghdwalue
(wholly turbulent) fore /d = 0.0002from Moody chart. Itis =~ 0.015 Now from Darcy-Weisbach
formula (4) we have

L V2
hf_fBZ—g = f¥=0471



f ~0.015 v=,/0471/0.014=58m/s  Re=vd/v ~ 87000
fren(87000 = 0.0195v = /0.471/0.0195=4.91m/s  Re=vd/v ~ 73700
frew(73700 = 0.0201v = /0.471/0.0201=4.84m/s  Re=vd/v ~ 72600

f(72600 = 0.0201, so we can accept: 4,84m/s, q, = v(“%z) =0,342m?/s.

1.3 Minor losses

For any pipe system, in addition to the Moody-type frictiosd computed for the length of pipe.
Most pipe systems consist of considerably more than strgigks. These additional components
add to the overall head loss of the system. Such losses aeeafjgrtermedminor losses with
the apparent implication being that the majority of the eystoss is associated with the friction
in the straight portions of the pipes, th®jor lossesor local losses In many cases this is true. In
other cases the minor losses are greater than the majos|dd9se minor losses may raised by

1. Pipe entrance or exit

2. Sudden expansion or contraction

3. Bends, elbows, tees, and other fittings
4. Valves,open or partially closed

5. Gradual expansions or contractions

The major lossesmay not be so minor; e.g., a partially closed valve can caugeater pressure
drop than a long pipe. The losses are commonly measuredimgoeally. The data, especially
for valves, are somewhat dependent upon the particular imevers design.

The most common method used to determine these head logsessure drops

Bp_ ¥

h==P_k L
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whereK, meanglocal) loss coefficient AlthoughK_ is dimensionless, it is not correlated in the
literature with the Reynolds number and roughness ratiodiber simply with the raw size of the
pipe. Almost all data are reported for turbulent-flow coiwahis.

Example 3. Find (see figure 5.)
1. the discharge through the pipeline as in figure for H=10 m
2. determine the head loss lfbr g, = 601 /s.

D =0.15m, £ =0,0017 v = 1,01-10°°.
Solution. The energy equation applied between points 1 and 2 includintpe losses, can be
written as
VoLV
2g

V2
H1—2—g+f 5 g+(K1+K2+K3+K4)2—g



r
Loss Coefficients for Pipe Components (k,_ =K, VE)
Component EL
a. Elbows

Regular 90°, flanged 03 V=
Regular 90°, threaded 1.5 T }
Long radius 90°, flanged 0.2 ;
Long radius 90°, threaded 0.7
Long radius 45°, flanged 0.2 —'\
Regular 45°, threaded 0.4 v “;\\

b. 180° return bends v
180° return bend, flanged 0.2 )
180° return bend, threaded 1.5
o
¢. Tees
Line flow, flanged 0.2 L !
Line flow, threaded 0.9 V- -
Branch flow, flanged 1.0
Branch flow, threaded 20 k
v = J
d. Union, threaded 0.08
—_—
‘e. Valves L Bt =
Gilobe, fully open 10
Angle, fully open 2
Gate, fully open 0.15
Gate, § closed 0.26
Gate,  closed 2.1
Gate, § closed 17
Swing check, forward flow 2
Swing check, backward flow L
Ball valve, fully open 0.05
Ball valve, } closed 5.5
Ball valve, 2 closed 210
Figure 4:

where Kk = 0,5 is entrance loss coefficienglKs = 0,9 as a standard elbow, ands&= 10 for
globe valve fully open. Putting the values tot the above fitrone obtain

V2 f
1 29( g )

To start we need to guess f. A good first guess is the "fully mdwglue (wholly turbulent) for
€/d = 0,0017rom Moody chart. Itis f~ 0,022 Now from Darcy-Weisbach formula (4) we have

10= 2%(13,3+ 6800022 = V,=2.63 Re=391000

f ~0,023 v=26m/s  Re=vd/v~ 380000
fren(380000 =0,023v=2,6m/s  Re=vd/v ~ 380000



150-mm-diam clean cast-iron pipe @_

Globe valve

Standard elbows
60 m

Square-edged entrance

Figure 5: Pipeline with minor losses

We accepted ¥ 2,60m/s, g =V(™)=459.10 3m?/s.
For the second part, with,cknown, the solution is straightforward:

q 006
Vo — KV o =340m/s,  Re=505000  f=0023
4
and
H 3.4 =" (13,3+6800023) = 17,06 m
1= %981 -

Example 4. Flow between two reservoirs. Water at10°C flow from a large reservoir to a small
one through a 5-cm-diameter cast iron piping system shoviigume (6). Determine the elevation
z; for the flow rate of6l /s.

Sharp-edged
entrance, K, =0.5

Standard elbow,
flanged, K; = 0.2

Gate valve
fully open
K, =03

80m

Figure 6:

(Answer. 27,9 m)



During this course | will be used the following books:
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